Tag Archives: Regeneration

Medicine: Using Stem Cells To Treat Osteonecrosis

Daniel Wiznia, MD, an orthopaedic surgeon with Yale School of Medicine, is practicing a surgical technique designed to render 10% of hip replacements unnecessary. Regenerative properties from a patient’s own stem cells are responsible for regrowing bone, restoring blood flow, and being able to avoid further interventional surgery.

Osteonecrosis, also known as avascular necrosis, occurs in more than 20,000 Americans each year. As the condition progresses, bone cells known as osteoblasts become unable to repair themselves and sustain the integrity of the bone, and ultimately die. The bone deterioration leads to a decrease in blood flow to the area, further weakening the entire skeletal structure of the upper leg.

If unaddressed, the ball portion of the hip’s ball and socket joint will cave in on itself and collapse, requiring a total hip replacement. The fact that patients often receive this diagnosis during their 30s and 40s presents a particular challenge.

While the lifespan of hip prosthetics has dramatically increased in recent years, a patient who undergoes a total hip arthroplasty, or total hip replacement, at that age will almost certainly require a revision later in life. This redo of the same surgery at an older age comes with an entirely new set of risks and potential complications, making it that much harder to manage down the road.

Read more

STANFORD: RESEARCHERS FIND WAY TO “REGROW” NEW CARTILAGE IN JOINTS

The Stanford researchers figured out how to regrow articular cartilage by first causing slight injury to the joint tissue, then using chemical signals to steer the growth of skeletal stem cells as the injuries heal. The work was published Aug. 17 in the journal Nature Medicine.

“Cartilage has practically zero regenerative potential in adulthood, so once it’s injured or gone, what we can do for patients has been very limited,” said assistant professor of surgery Charles K.F. Chan, PhD. “It’s extremely gratifying to find a way to help the body regrow this important tissue.”

STANFORD MEDICINE (Aug 17, 2020): Researchers at the Stanford University School of Medicine have discovered a way to regenerate, in mice and human tissue, the cushion of cartilage found in joints.

Loss of this slippery and shock-absorbing tissue layer, called articular cartilage, is responsible for many cases of joint pain and arthritis, which afflicts more than 55 million Americans. Nearly 1 in 4 adult Americans suffer from arthritis, and far more are burdened by joint pain and inflammation generally.

Read full article

COMMENTARY

Stanford has come up with a Promising new approach to the surgical treatment of osteoarthritis. Unfortunately for the suffering public, this approach is still in the rodent experimental stage.

The pain of osteoarthritis is caused by the LOSS of the CARTILAGE which insulates the bone of the joints. The wonderful cartilage coating prevents the pain which would result from the rubbing of bone on bone. The best solution in osteoarthritis would be to replace the cartilage, and I have no doubt that this will be possible some day.

STEM CELLS is the theoretical method most commonly imagined when it comes to replacing lost tissue.. Brain cells, cardiac muscle cells, and pancreatic islet cells are some of the research areas. The development of stem cells from the cells of the Patient herself (iSCs) obviates the need for immunosuppression, which plagues allographs ( stem cells or organs from other humans).

Recently, in situ transformation of neighboring cells has been described, which sidesteps the need to introduce any cells. For instance the transformation of astrocytes (a type of brain cell) into neuronal stem cells of the dopamine lineage would be a great boon to Parkinson’s disease.

The Stanford method somewhat resembles this last-mentioned technique. An injury is created where the cartilage is desired. Like any injury, bleeding, clotting, and cell infiltration follows, destined to form a scar. However, the researchers added BMP-2, which in this milieu causes the pro-fibroblasts to head toward the bone (osteoblast) lineage. Since cartilage forms first in a tissue destined to be bone, they then added a VEGF antagonist, which interrupts the transformation in the desired cartilage stage. Both BMP-2 and anti-VEGF have already been approved for use, facilitating the development of this attractive therapy.

The researchers have even identified an excellent potential Patient Population: Osteoarthritis patients scheduled for surgical removal of the first metacarpal articulation with the wrist. They could do their procedure on this area, and if there is no benefit, They could just go ahead with the original plan of removal. The thumb happens to be one of my most painful arthritic areas.

I will most interestedly follow their research.

–Dr. C.