STANFORD: RESEARCHERS FIND WAY TO “REGROW” NEW CARTILAGE IN JOINTS

The Stanford researchers figured out how to regrow articular cartilage by first causing slight injury to the joint tissue, then using chemical signals to steer the growth of skeletal stem cells as the injuries heal. The work was published Aug. 17 in the journal Nature Medicine.

“Cartilage has practically zero regenerative potential in adulthood, so once it’s injured or gone, what we can do for patients has been very limited,” said assistant professor of surgery Charles K.F. Chan, PhD. “It’s extremely gratifying to find a way to help the body regrow this important tissue.”

STANFORD MEDICINE (Aug 17, 2020): Researchers at the Stanford University School of Medicine have discovered a way to regenerate, in mice and human tissue, the cushion of cartilage found in joints.

Loss of this slippery and shock-absorbing tissue layer, called articular cartilage, is responsible for many cases of joint pain and arthritis, which afflicts more than 55 million Americans. Nearly 1 in 4 adult Americans suffer from arthritis, and far more are burdened by joint pain and inflammation generally.

Read full article

COMMENTARY

Stanford has come up with a Promising new approach to the surgical treatment of osteoarthritis. Unfortunately for the suffering public, this approach is still in the rodent experimental stage.

The pain of osteoarthritis is caused by the LOSS of the CARTILAGE which insulates the bone of the joints. The wonderful cartilage coating prevents the pain which would result from the rubbing of bone on bone. The best solution in osteoarthritis would be to replace the cartilage, and I have no doubt that this will be possible some day.

STEM CELLS is the theoretical method most commonly imagined when it comes to replacing lost tissue.. Brain cells, cardiac muscle cells, and pancreatic islet cells are some of the research areas. The development of stem cells from the cells of the Patient herself (iSCs) obviates the need for immunosuppression, which plagues allographs ( stem cells or organs from other humans).

Recently, in situ transformation of neighboring cells has been described, which sidesteps the need to introduce any cells. For instance the transformation of astrocytes (a type of brain cell) into neuronal stem cells of the dopamine lineage would be a great boon to Parkinson’s disease.

The Stanford method somewhat resembles this last-mentioned technique. An injury is created where the cartilage is desired. Like any injury, bleeding, clotting, and cell infiltration follows, destined to form a scar. However, the researchers added BMP-2, which in this milieu causes the pro-fibroblasts to head toward the bone (osteoblast) lineage. Since cartilage forms first in a tissue destined to be bone, they then added a VEGF antagonist, which interrupts the transformation in the desired cartilage stage. Both BMP-2 and anti-VEGF have already been approved for use, facilitating the development of this attractive therapy.

The researchers have even identified an excellent potential Patient Population: Osteoarthritis patients scheduled for surgical removal of the first metacarpal articulation with the wrist. They could do their procedure on this area, and if there is no benefit, They could just go ahead with the original plan of removal. The thumb happens to be one of my most painful arthritic areas.

I will most interestedly follow their research.

–Dr. C.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s